t(8;22)/BCR-FGFR1 myeloproliferative disorder presenting as B-acute lymphoblastic leukemia: Report of a case treated with sorafenib and review of the literature

1. Introduction

The 8p11 myeloproliferative syndrome (EMS) is a rare and aggressive hematological neoplasm caused by rearrangements involving fibroblast growth factor receptor 1 (FGFR1) gene on chromosome 8p11, and one of 11 identified partner genes. The result is a variety of fusion genes encoding aberrant tyrosine kinases and activating multiple signal transduction pathways [1,2].

Involvement of t(8;22)/BCR-FGFR1 is exceedingly rare, with only 8 cases reported to date [3]. It usually presents as chronic myelogenous leukemia (CML)-like disease rapidly evolving into acute myeloid leukemia (AML), but one reported case presented as B-acute lymphoblastic leukemia (B-ALL) [3]. Herein, we report the second case of t(8;22) presenting as B-ALL, and the first to be treated with targeted therapy against tyrosine kinase following chemotherapy.

2. Case report

A 43 year-old man presented with weakness, night sweats, and weight loss. Physical examination revealed tender splenomegaly. White blood cell (WBC) count was 53 × 10^9/L with 18% neutrophils, 9% lymphocytes, 3% monocytes, 3% metamyelocytes, 2% myelocytes, 2% promyelocytes, and 63% blasts. Hemoglobin was 7.6 g/dL and platelet count was 6 × 10^9/L.

Bone marrow (BM) aspirate and biopsy showed 100% cellularity with virtual replacement by B-ALL. Flow cytometry demonstrated an 84% population of B-lymphoblasts with CD10+/CD19+/CD20 partial+/CD22+/CD38+/CD34 subset+/surface Ig Light/CD79a+/myeloid antigens− immunophenotype. Cyto- genetics showed t(8;22)(p11;q11) among other structural abnormalities.

The patient was in remission after cycle 1A of hyperCVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, dacarbazine). He completed 8 cycles of intravenous chemotherapy and 16 intrathecal chemotherapy infusions.

His treatment course was intriguingly complicated by severe leukocytosis and painful splenomegaly (21.9 cm spleen on ultrasound) in response to granulocyte colony-stimulating factor therapy (filgrastim). The highest WBC was 233 × 10^9/L after cycle 3A with 61% neutrophils and 3% blasts. BM examination revealed left-shifted granulopoiesis reminiscent of CML and no evidence of recurrent B-ALL. We investigated the therapeutic option of allo- geneic stem cell transplantation but were unable to identify a suitable HLA-matched donor.

At the completion of hyperCVAD, the patient still had no evidence of ALL but displayed characteristics of a CML-like neoplasm.

Because of his BCR-FGFR1 rearrangement, we reasoned that the disease might be driven in part by FGFR1 tyrosine kinase activity. He was started on hydroxyurea 1000 mg twice a day and the FGFR1 inhibitor sorafenib 400 mg orally twice a day [4]. Eleven days later, hydroxyurea was discontinued since this therapy was associated with a decrease in WBC count (Fig. 1). BM biopsy at 1 month revealed relapsed B-ALL despite a normal peripheral WBC count and differential. The patient received FLAG-Ida (fludara- bine, cytarabine, idarubicin) without filgrastim, while remaining on sorafenib. Day 15 BM showed persistent B-ALL and an expansion of myeloblasts of which further immunophenotypic analysis could not be performed due to low cellularity. The patient deteriorated clinically and died 6 weeks later.

3. Results

3.1. Cytogenetics and FISH

At diagnosis, an abnormal karyotype with translocation (8;22) and additional abnormalities was observed in all 11 metaphases: 45,XY,t(6;11)(q11;p13),–7,t(8;22)(p11.2;q11.2),del(9)(p13p22) (Fig. 2A).

The next cytogenetic studies at CML-like phase showed sole t(8;22)(p11.2;q11.2). FISH using the Vysis LSI BCR/ABL Dual Color, Dual Fusion Translocation Probe (Des Plaines, Illinois 60018) showed 3 signals for BCR in 87% of nuclei examined, consistent with rearrangement of BCR but no evidence of BCR/ABL1 fusion. FISH on G-banded metaphases showed a BCR signal on the derivative chromosome 8 (Fig. 2B). FISH studies using the BAC clone RP11-333B24 from Empire Genomics (Buffalo, New York 14203, USA) spanning the FGFR1 locus showed that 85% of nuclei had evidence of a rearrangement of the FGFR1, which was confirmed on previously G-banded metaphases, manifested as the BAC clone RP11-333B24 signal on the normal chromosome 8, the derivative chromosome 8 and the derivative chromosome 22 (Fig. 2C).

Two months later when the patient was still in CML-like phase, cytogenetic analysis again showed t(8;22)(p11.2;q11.2) as the sole abnormality. FISH suggested an additional rearrangement of FGFR1 (Fig. 2D).

Follow-up cytogenetic studies at recurrence of B-ALL showed the abnormalities detected in the initial clone at diagnosis: t(8;22)(p11.2;q11.2), t(6;11)(q11;p13), del(9)(p13p22) with additional structural abnormalities including inv(2)(p11.2q31), t(3;7)(q23;q11.2), add(7)(p13), der(9)t(7;9)(p15;q22), inv(17)(p11.2q21), and an extra copy of der(8)t(8;22)(p11.2q11.2).

4. Discussion

We report the second case of t(8;22)/BCR-FGFR1 presenting as B-ALL [3], and the first to be treated with the multi-tyrosine kinase...
inhibitor sorafenib following chemotherapy. Our case reaffirms several important clinicopathologic and biologic aspects of EMS.

First, in contrast with other FGFR1 rearrangements frequently presenting with eosinophilia and lymphadenopathy, patients with t(8;22)/BCR-FGFR1 display leukocytosis and neutrophilia in a clinical syndrome resembling CML, as did our patient. This distinct clinical presentation suggests a special role of BCR in the expression of the disease [5]. This is thought to be the case for all FGFR1 partner genes, each wielding a different effect on the malignant phenotype, even if activation of FGFR1 remains the most significant oncogenic step [2].

Second, our case supports that EMS derives from a multipotent hematopoietic stem cell [1,2], by demonstrating BCR-FGFR1 fusion in the B-lymphoid lineage at initial presentation of B-ALL, and in the myeloid lineage at the CML-like phase. It is currently believed that normal hematopoiesis involves the generation of myeloid/T-lymphoid and myeloid/B-lymphoid progenitor cells at the early stages of development [6]. Therefore, the cell origin of EMS may be a very early progenitor cell retaining the potential for both myeloid and lymphoid differentiation.

Third, this case illustrates the importance of cooperating oncogenic pathways in the pathogenesis of neoplastic phenotypes in EMS. Our case harbored additional chromosomal abnormalities comparable to the previously reported case of t(8;22)/BCR-FGFR1 rearranged B-ALL: −7 and del(9)(p13p24), and del(7)(p12p15) and −9, respectively [3]. Interestingly, PAX-5 and IKZF1 are located in 9p13 and 7p12, in that order, and recurrent genomic deletions of both genes have been identified and implicated in the pathogen-

![Fig. 1](image1.png)

Fig. 1. Representative curve of white blood cell (WBC) count upon sorafenib treatment (patient received hydroxyurea from day 0 to day 11).

![Fig. 2](image2.png)

Fig. 2. (A) Representative karyotype at initial diagnosis shows abnormalities including t(8;22)(p11;q11). (B) FISH shows 3 BCR signals (using the LSI BCR/ABL). (C) FISH shows 3 FGFR1 signals (using the RP11-333B24 BAC) in 92% of the cells examined. (D) FISH using the BAC clone RP11-333B24 shows FGFR1 rearrangement in 91.8% (179/195) of nuclei. 73 of these 179 cells (41%) had an extra RP11-333B24 signal, suggesting an additional rearrangement of FGFR1 with a different chromosome, which was also confirmed with FISH on metaphases.
esis of t(9;22)/BCR-ABL1 rearranged B-ALL [7,8]. It is tempting to speculate that the disruption of PAX5 and IKZF1 may play a role in the transformation of CML-like disease to B-ALL in BCR-FGFR1 rearranged neoplasm, in a manner similar to BCR-ABL1 rearranged B-ALL. On the other hand, alteration of RUNX1 has been previously suspected to play a role in the transformation of both t(9;22)/BCR-ABL1 CML and t(8;22)/BCR-FGFR1 neoplasm to AML [9].

Lastly, our case underscores the importance of accurate molecular diagnosis in patients with FGFR1 rearrangement who can misleadingly present as B-ALL. These patients have aggressive courses and are resistant to conventional management but might be amenable to treatment with specific FGFR1 inhibitors. Following the success of imatinib in neoplasms with rearrangement of PDGFRα and PDGFRβ [10], the FGFR1 inhibitor PKC412 was used in a patient with ZNF198-FGFR1, resulting in improved leukocytosis and lymphadenopathy but persistent cytogenetic abnormality [11]. We are the first to apply this strategy in a patient with t(8;22)(p11;q11) and BCR-FGFR1, using the FGFR1 inhibitor sorafenib [4]. The response was of short duration as our patient relapsed with B-ALL nearly a month later. Our patient’s malignancy had undergone extensive clonal evolution. Certain clones causing CML-like manifestations may have retained sensitivity to sorafenib treatment, while clones manifesting as B-ALL were clearly resistant. Conceivably, earlier treatment or the use of more potent FGFR1 inhibitors might be more effective in EMS, but allogeneic stem cell transplantation remains the treatment of choice [1,2].

Conflict of interest statement

All authors have no conflict of interest to declare.

Funding

None.

Acknowledgement

None. Contributions: J.J.W. and C.A.T. contributed equally to this work.

References

Jad J. Wakim*
Division of Hematology and Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA

Carlos A. Tirado
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA

Weina Chen
Ameripath North Texas, Dallas, TX, USA

Robert Collins
Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA

*Corresponding author. Tel.: +1 214 648 4180; fax: +1 214 648 4180.
E-mail address: jad.wakim@phhs.org (J.J. Wakim)

1 March 2011
11 April 2011
9 May 2011
Available online 31 May 2011